• Skip to primary navigation
  • Skip to content
  • Skip to primary sidebar
  • Skip to secondary sidebar

GoHired

Interview Questions asked in Google, Microsoft, Amazon

Join WeekEnd Online Batch from 4-April-2020 on How to Crack Coding Interview in Just 10 Weeks : Fees just 20,000 INR

  • Home
  • Best Java Books
  • Algorithm
  • Internship
  • Certificates
  • About Us
  • Contact Us
  • Privacy Policy
  • Array
  • Stack
  • Queue
  • LinkedList
  • DP
  • Strings
  • Tree
  • Mathametical
  • Puzzles
  • Graph

Singly linked list

February 25, 2014 by Dhaval Dave

In computer science, a linked list is a data structure consisting of a group of nodes which together represent a sequence. Under the simplest form, each node is composed of a datum and a reference (in other words, a link) to the next node in the sequence; more complex variants add additional links. This structure allows for efficient insertion or removal of elements from any position in the sequence.
Singly-linked-list.svg


One way to visualize a linked list is as though it were a train. The programmer always stores the first node of the list in a pointer he won’t lose access to. This would be the engine of the train. The pointer itself is the connector between cars of the train. Every time the train adds a car, it uses the connectors to add a new car. This is like a programmer using malloc to create a pointer to a new struct.

heres below the c program for the implementation of single linked list

#include <stdio.h > 
  #include <conio.h >
struct node {
  int x;
  struct node *next;
};

int main()
{
    /* This won't change, or we would lose the list in memory */
    struct node *root;       
    /* This will point to each node as it traverses the list */
    struct node *conductor;  

    root = malloc( sizeof(struct node) );  
    root->next = 0;   
    root->x = 12;
    conductor = root; 
    if ( conductor != 0 ) {
        while ( conductor->next != 0)
        {
            conductor = conductor->next;
        }
    }
    /* Creates a node at the end of the list */
    conductor->next = malloc( sizeof(struct node) );  

    conductor = conductor->next; 

    if ( conductor == 0 )
    {
        printf( "Out of memory" );
        return 0;
    }
    /* initialize the new memory */
    conductor->next = 0;         
    conductor->x = 42;

    return 0;
}

That is the basic code for traversing a list. The if statement ensures that the memory was properly allocated before traversing the list. If the condition in the if statement evaluates to true, then it is okay to try and access the node pointed to by conductor.

The while loop will continue as long as there is another pointer in the next. The conductor simply moves along. It changes what it points to by getting the address of conductor->next.

Finally, the code at the end can be used to add a new node to the end. Once the while loop as finished, the conductor will point to the last node in the array. (Remember the conductor of the train will move on until there is nothing to move on to? It works the same way in the while loop.)  Therefore, conductor->next is set to null, so it is okay to allocate a new area of memory for it to point to (if it weren’t NULL, then storing something else in the pointer would cause us to lose the memory that it pointed to).

When we allocate the memory, we do a quick check to ensure that we’re not out of memory, and then the conductor traverses one more element (like a train conductor moving on to the newly added car) and makes sure that it has its pointer to next set to 0 so that the list has an end. The 0 functions like a period; it means there is no more beyond. Finally, the new node has its x value set. (It can be set through user input. I simply wrote in the ‘=42’ as an example.)

Similar Articles

Filed Under: problem Tagged With: Linked List

Reader Interactions

Primary Sidebar

Join WeekEnd Online/Offline Batch from 4-April-2020 on How to Crack Coding Interview in Just 10 Weeks : Fees just 20,000 INR

Join WeekEnd Online/Offline Batch from 4-April-2020

WhatsApp us

Secondary Sidebar

Custom Search

  • How I cracked AMAZON
  • LeetCode
  • Adobe
  • Amazon
  • Facebook
  • Microsoft
  • Hacker Earth
  • CSE Interview

Top Rated Questions

Sort an array according to the order defined by another array

Edit Distance ( Dynamic Programming )

Linked List V/S Binary Search Tree

25 horses 5 tracks Find 3 fastest puzzle

Find the number ABCD such that when multipled by 4 gives DCBA.

Trie Dictionary

The greedy coins game Dynamic Programming

Length of the longest substring without repeating characters

Find the smallest window in a string containing all characters of another string

SAP Off Campus Hiring_ March 2015 Analytical Aptitude

Subset Sum Problem Dynamic programming

Stickler thief

building with N steps, we can take 1,2,3 steps calculate number of ways to reach at top of building

Flipkart Set 1 On Campus with Answers

Adobe Interview Questions 8 month Exp

Memory Efficient LinkedList

Find and print longest consecutive number sequence in a given sequence in O(n)

Difference between a LinkedList and a Binary Search Tree BST

Templates in C++

VMWare SDEII Interview

Stock Buy Sell to Maximize Profit

Number of Islands BFS/DFS

HackeEarth Flipkart’s Drone

Password Predictor

Test Cases for Round Function

Serialise Deserialise N-ary Tree

Find if two rectangles overlap

Maximum occurred Smallest integer in n ranges

Generate next palindrome number

Binary Tree in Java

Copyright © 2025 · Genesis Framework · WordPress · Log in