Example: {3, 4, 5, 6, 7, 1, 2} output: 1
Algorithm:
This problem can be easily solved in O(n) time complexity buy traversing the
whole array and check for minimum element.
Here we are using a different solution which takes O(Log n)
Let us look at this approach, we are using a modified version of Binary Search Tree algorithm.
Thanks Dheeraj for sharing Question and Code for this .
Code:
#include<iostream>
using namespace std;
int BST(int A[],int low,int high){
int mid=low+(high-low)/2;
if ( mid == high ) return A[mid]; //if size of sub array is 1
if(mid < high && mid > low && A[mid] < A[mid + 1] && A[mid -1] > A[mid] )
return A[mid];
//compare value of mid + 1,mid, mid-1 if they exist
if(A[mid] > A[high]) {
if(A[mid + 1] < A[mid]) return A[mid + 1];
else return BST(A, mid + 1, high); //check in right sub array
}
else
{
if(A[mid] < A[mid – 1]) return A[mid];
else return BST(A , low , mid – 1); //check in left sub array
}
}
int main()
{
int A[]={3,4,5,6,7,1,2};
int n= sizeof(A)/sizeof(A[0]);
cout<<BST(A,0,n-1)<<endl;
}