
Stickler thief

Solution:-
Loop for all elements in arr[] and maintain two sums sum1 and sum2l where sum1 = Max sum

including the previous element and sum2 = Max sum excluding the previous element.

Max sum excluding the current element will be max(sum1, sum2) and max sum including the

current element will be sum2 + current element (Note that only sum2 is considered because

elements cannot be adjacent).

At the end of the loop return max of sum1 and sum2.

Example:

arr[] = {5, 5, 10, 40, 50, 35}

 sum1= 5

 sum2= 0

 For i = 1 (current element is 5)

 sum1= (sum2+ arr[i]) = 5

 sum2= max(5, 0) = 5

 For i = 2 (current element is 10)

 sum1 = (sum2 + arr[i]) = 15

 sum2 = max(5, 5) = 5

 For i = 3 (current element is 40)

 sum1 = (sum2+ arr[i]) = 45

 sum2 = max(5, 15) = 15

 For i = 4 (current element is 50)

 sum1= (sum2 + arr[i]) = 65

 sum2 = max(45, 15) = 45

 For i = 5 (current element is 35)

 sum1= (sum2 + arr[i]) = 80

 sum2 = max(65, 45) = 65

And 35 is the last element. So, answer is max(incl, excl) = 80

Implementation:

C++

#include<bits/stdc++.h>

Using namespace​ std;

/*Function to return max sum such that no two elements are adjacent */

int FindMaxSum(int arr[], int n)

(

int sum1 = arr[0];

 int sum2 = 0;

 int result,i;

 ​for​ ​(i = 1; i < n; i++)

 {

 ​/* current max excluding i */

 result = (sum1 > sum2)? sum1: sum2;

 ​ /* current max including i */

 sum1 = sum2 + arr[i];

 sum2 = result;

 }

 ​/* return max of incl and excl */

 ​return​ ((sum1 > sum2)? sum1 : sum2);

}

/* Driver program to test above function */

int main()

{

 int t;

 cin>>t;

 ​while​(t--)

 {

 cin>>n;

 int arr[n];

 ​for​(int i=0;i<n;i++)

 cin>>a[i];

 cout<<FindMaxSum(arr,n);

}

 return 0;

}

