Stickler thief

Solution:-
Loop for all elements in arr[] and maintain two sums sum1 and sum2l where sum1 = Max sum

including the previous element and sum2 = Max sum excluding the previous element.

Max sum excluding the current element will be max(sum1, sum2) and max sum including the
current element will be sum2 + current element (Note that only sum2 is considered because

elements cannot be adjacent).
At the end of the loop return max of sum1 and sumz2.

Example:

arr[] = {5, 5, 10, 40, 50, 35}
suml=5
sum2=0

For i = 1 (current element is 5)
suml= (sum2+ arr[i]) =5
sum2= max(5,0) =5

For i = 2 (current element is 10)
suml = (sum2 + arr[i]) = 15

sum2 = max(5,5) =5

For i = 3 (current element is 40)
suml = (sum2+ arr[i]) = 45
sum2 = max(5, 15) = 15

For i = 4 (current element is 50)
suml= (sum2 + arr[i]) = 65
sum2 = max(45, 15) = 45

For i = 5 (current element is 35)
suml= (sum2 + arr[i]) = 80

sum2 = max(65, 45) = 65

And 35 is the last element. So, answer is max(incl, excl) = 80




Implementation:
C++

#include<bits/stdc++.h>
Using namespace std;
/*Function to return max sum such that no two elements

int FindMaxSum(int arr[], int n)

int suml = arr[0];
int sum2 = 0;
int result,i;

for (1 = 1; i < n; i++)

/* current max excluding i */
result = (suml > sum2)? suml: sum2;

/* current max including i */

suml sum2 + arr[i];

sum2 result;

/* return max of incl and excl */

return ((suml > sum2)? suml : sum2) ;

are adjacent */



/* Driver program to test above function */

int main()

int t;

cin>>t;

while (t--)

cin>>n;

int arr[n];

for(int i=0;i<n;i++)

cin>>al[i];

cout<<FindMaxSum(arr,n) ;

return O;



